112 research outputs found

    Connectivity Influences on Nonlinear Dynamics in Weakly-Synchronized Networks: Insights from Rössler Systems, Electronic Chaotic Oscillators, Model and Biological Neurons

    Get PDF
    Natural and engineered networks, such as interconnected neurons, ecological and social networks, coupled oscillators, wireless terminals and power loads, are characterized by an appreciable heterogeneity in the local connectivity around each node. For instance, in both elementary structures such as stars and complex graphs having scale-free topology, a minority of elements are linked to the rest of the network disproportionately strongly. While the effect of the arrangement of structural connections on the emergent synchronization pattern has been studied extensively, considerably less is known about its influence on the temporal dynamics unfolding within each node. Here, we present a comprehensive investigation across diverse simulated and experimental systems, encompassing star and complex networks of Rössler systems, coupled hysteresis-based electronic oscillators, microcircuits of leaky integrate-and-fire model neurons, and finally recordings from in-vitro cultures of spontaneously-growing neuronal networks. We systematically consider a range of dynamical measures, including the correlation dimension, nonlinear prediction error, permutation entropy, and other information-theoretical indices. The empirical evidence gathered reveals that under situations of weak synchronization, wherein rather than a collective behavior one observes significantly differentiated dynamics, denser connectivity tends to locally promote the emergence of stronger signatures of nonlinear dynamics. In deterministic systems, transition to chaos and generation of higher-dimensional signals were observed; however, when the coupling is stronger, this relationship may be lost or even inverted. In systems with a strong stochastic component, the generation of more temporally-organized activity could be induced. These observations have many potential implications across diverse fields of basic and applied science, for example, in the design of distributed sensing systems based on wireless coupled oscillators, in network identification and control, as well as in the interpretation of neuroscientific and other dynamical data

    Experimental cannibalization of plagioclase by alkaline basalt magmas

    Get PDF
    Time-series crystallization/dissolution experiments were conducted on a natural potassic basalt seeded with bytownitic plagioclases (Plg) at atmospheric pressure, in air, at 1180- 1240 °C and isothermal dwell time up to 20 hours. Plg-seed presence promotes the early formation of new-Plg, dampening the clinopyroxene (Cpx) crystallization. New-Plgs grow at a rate from 10-6 up to 10-8 cm·s-1 as the dwell time increases. Seeds overgrow at similar rate. Cpx crystallizes with a delay of at least 3 hours; this has a significant impact on the composition of both residual melt and new-Plgs. For undercooling >35 °C the Cpx delay causes a strong supersaturation of this phase in the melt resulting in a decrease in the new-Plg nucleation rate by 2 orders of magnitude in the 3 h-experiment. In the 15h-run, Cpx coarsening and the decrease of crystallinity suggest the achievement of a near-equilibrium conditions. Cpx growth rate is in the order of 10-7 cm·s-1 showing very limited variation. Finally, for the investigated superheating (5-15 °C) only the long lasting experiments allows an estimation of Plg dissolution rate (10-9 cm·s-1) although changes in the melt composition are already detectable in the 3h-runs. As a whole our results suggest that in natural systems, the takeover of antecrysts/ xenocrysts by a magma can induce on a short time scales, changes in its initial nucleation behavior with remarkable petrological implications for the solidification paths and eruptive dynamics of potassic magmatic systems

    Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach

    Get PDF
    Magma generation in the Ross Sea system is related to partial melting of strongly metasomatised mantle sources where amphibole most probably plays a crucial role. In this context, metasomatism induced by a mela-nephelinite melt in lithospheric mantle of the Mt. Melbourne Volcanic Province (northern Victoria Land – NVL, Antarctica) was investigated experimentally studying the effects of melt interaction with lherzolite at 1.5-2.0 GPa and T=975-1300°C, and wehrlite at 1.0 GPa and T=1050-1250°C. The experiments were designed to induce melt infiltration into the ultramafic rocks. The observed modifications in minerals are compared with those found in mantle xenoliths from NVL. The effects of metasomatic modifications are evaluated on the basis of run temperature, distance from the infiltrating melt and on the diffusion rates of chemical components. Both in lherzolite and wehrlite, clinopyroxene exhibits large compositional variations ranging from primary diopside to high Mg-Cr-(Na) augitic and omphacitic clinopyroxenes in lherzolite, and to low Mg and high Ti-Al-Fe-Na augites in wehrlite. Olivine (in wehrlite) and spinel (in lherzolite) also result compositionally modified, the former shows enrichments in Fe, the latter displays a higher Cr/(Cr+Al) ratio. The systematic variations in mineral compositions imply modifications of the chemistry of the infiltrating melt as recorded by the glass veinlets and patches observed in some charges. In experiments involving wehrlite paragenesis, the glass composition approaches that of melt patches associated to both amphibole-free and amphibole-bearing natural samples, and is related to olivine+clinopyroxene crystallisation coupled with primary clinopyroxene dissolution at the contact between the metasomatising melt and the solid matrix. Even if amphibole crystallisation was not attained in the experiments, we were able to explain the occurrence of amphibole in the natural system considering that in this case a hot metasomatising melt infiltrates a cooler matrix

    High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions

    Get PDF
    High-resolution ultrasound spectroscopy (HR-US) is a spectroscopic technique using ultrasound waves at high frequencies to investigate the structural properties of dispersed materials. This technique is able to monitor the variation of ultrasound parameters (sound speed and attenuation) due to the interaction of ultrasound waves with samples as a function of temperature and concentration. Despite being employed for the characterization of several colloidal systems, there is a lack in the literature regarding the comparison between the potential of HR-US for the determination of phospholipid thermal transitions and that of other common techniques both for loaded or unloaded liposomes. Thermal transitions of liposomes composed of pure phospholipids (dimyristoylphosphatidylcholine, DMPC; dipalmitoylphosphatidylcholine, DPPC and distearoylphosphatidylcholine, DSPC), cholesterol and their mixtures were investigated by HR-US in comparison to the most commonly employed microcalorimetry (mDSC) and dynamic light scattering (DLS). Moreover, tramadol hydrochloride, caffeine or miconazole nitrate as model drugs were loaded in DPPC liposomes to study the effect of their incorporation on thermal properties of a phospholipid bilayer. HR-US provided the determination of phospholipid sol-gel transition temperatures from both attenuation and sound speed that are comparable to those calculated by mDSC and DLS techniques for all analysed liposomal dispersions, both loaded and unloaded. Therefore, HR-US is proposed here as an alternative technique to determine the transition temperature of phospholipid membrane in liposomes

    Synthesis and Properties of Sucrose- and Lactose-Based Aromatic Ester Surfactants as Potential Drugs Permeability Enhancers

    Get PDF
    The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such, there is the need to discover new compounds that act as drug permeability enhancers with a favorable toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants. In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized with the aim to characterize them in terms of their physicochemical properties, structure–property relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3 cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when applied both below and above their critical micelle concentration. Among the explored molecules, lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible ~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel potential and safe permeation enhancers for pharmaceutical applications

    An overview of natural polymers as reinforcing agents for 3D printing

    Get PDF
    Three-dimensional (3D) printing, or additive manufacturing, is a group of innovative technologies that are increasingly employed for the production of 3D objects in different fields, including pharmaceutics, engineering, agri-food and medicines. The most processed materials by 3D printing techniques (e.g., fused deposition modelling, FDM; selective laser sintering, SLS; stereolithography, SLA) are polymeric materials since they offer chemical resistance, are low cost and have easy processability. However, one main drawback of using these materials alone (e.g., polylactic acid, PLA) in the manufacturing process is related to the poor mechanical and tensile properties of the final product. To overcome these limitations, fillers can be added to the polymeric matrix during the manufacturing to act as reinforcing agents. These include inorganic or organic materials such as glass, carbon fibers, silicon, ceramic or metals. One emerging approach is the employment of natural polymers (polysaccharides and proteins) as reinforcing agents, which are extracted from plants or obtained from biomasses or agricultural/industrial wastes. The advantages of using these natural materials as fillers for 3D printing are related to their availability together with the possibility of producing printed specimens with a smaller environmental impact and higher biodegradability. Therefore, they represent a “green option” for 3D printing processing, and many studies have been published in the last year to evaluate their ability to improve the mechanical properties of 3D printed objects. The present review provides an overview of the recent literature regarding natural polymers as reinforcing agents for 3D printing

    Renal involvement in HCV related cirrhosis evidenced as glomerular and tubular derangement

    Get PDF
    Introduction and Aims: The relation between HCV infection and glomerular damage is well recognized, with evidences of negative impact on renal function. HCV replication in renal tubular cells on kidney biopsies has been reported but very limited data are available on HCV-mediated tubular damage. The aim of the study was to assess the presence of renal involvement (RI), glomerular or tubular, in patients with HCV cirrhosis. Methods: 98 patients with HCV cirrhosis Child Pugh-A were consecutively enrolled. Glomerular filtration rate (eGFR) was estimated with CKD-EPI 2009 equation. Urinary albumin/creatinine (ACR) and alpha1microglobulin/creatinine (a1MCR) ratios were calculated. Glomerular involvement was defined based on ACR>20μg/mg, tubular involvement based on a1MCR>14μg/mg plus fractional sodium excretion (FeNa)>1%. Urine concentration of Liver-type Fatty Acid-Binding Protein (L-FABP) and Kidney injury molecule-1 (KIM-1) were examined in morning midstream urine samples (ELISA) and the values normalized to urine creatinine concentration as expression of tubular derangement. Results: eGFR was ≥60 mL/min/1.73 m2 in 92 patients (93.8%) and between 45-59 mL/min/1.73 m2 in 6 patients (6.1%). Glomerular involvement was found in 19 patients (19.4%), tubular involvement in 31 patients (31.6%) and these co-occurred in 10 patients ( p=0.034). Patients with glomerular or tubular involvement, or both, considered as patients with RI, showed significantly lower eGFR values ( p=0.005) (Tab 1). A ROC curve was drafted and a cut point of 90 ml/min predicted RI (AUC: 0.700; sensitivity 63%, specificity 75%). Patients with RI were older, had higher ACR and a1MCR levels and exhibited a higher KDIGO stage (Tab 1). No association was found between RI and: HCV-RNA levels, liver stiffness and liver function tests. L-FABP and KIM-1 levels were significantly higher in patients with RI. Conclusions: Tubular and/or glomerular involvement is quite frequent in HCV cirrhotic patients, despite a normal eGFR. The evidence of tubular involvement suggests an alternative localization of HCV as renal disease

    Dextran and its potential use as tablet excipient

    Get PDF
    Dextrans are a class of carbohydrate polymers extensively applied in pharmaceutical applications, particularly as drug conjugate macromolecular carriers or drug delivery systems. These polysaccharides improve the stability of the therapeutics enabling also the control of their release, via either the parenteral and or oral routes. In the latter case, due to their gel forming ability they may have potential as hydrophilic matrix tablets for sustained drug release. In this paper, we investigated the behaviour of different molecular weight (1, 40, 500 and 2300 kDa) dextrans as tabletting excipients. Powder particle size and hygroscopic studies have been reported, together with tabletability, tablet stability and tablet swelling. Moreover we use tramadol as model compound to evaluate the ability of dextrans to control drug dissolution. The results suggest that dextrans with lower molecular weights may be a promising excipient to be used as filler for immediate release tablets, due to their good tabletability and fast dissolution rate, while dextrans with higher molecular weights could be an efficient disintegrant due to their swelling ability
    • …
    corecore